The student is expected to identify simultaneous force pairs that are equal in magnitude and opposite in direction that result from the interactions between objects using Newton's Third Law of Motion.
A student expectation is directly related to the knowledge and skills statement, is more specific about how students demonstrate their learning, and always begins with a verb. Student expectations are further broken down into their component parts, often referred to as “breakouts.”
plan and conduct a descriptive investigation that predicts how pushes and pulls can start, stop, or change the speed or direction of an object's motion.
plan and conduct a descriptive investigation to demonstrate and explain how position and motion can be changed by pushing and pulling objects such as swings, balls, and wagons.
calculate the net force on an object in a horizontal or vertical direction using diagrams and determine if the forces are balanced or unbalanced; and
S.6.7.C
identify simultaneous force pairs that are equal in magnitude and opposite in direction that result from the interactions between objects using Newton's Third Law of Motion.
calculate and analyze how the acceleration of an object is dependent upon the net force acting on the object and the mass of the object using Newton's Second Law of Motion; and
investigate and describe how Newton's three laws of motion act simultaneously within systems such as in vehicle restraints, sports activities, amusement park rides, Earth's tectonic activities, and rocket launches.
explain and apply the concepts of equilibrium and inertia as represented by Newton's first law of motion using relevant real-world examples such as rockets, satellites, and automobile safety devices;
illustrate and analyze the simultaneous forces between two objects as represented in Newton's third law of motion using free body diagrams and in an experimental design scenario; and
Recurring themes and concepts — Connections to the content
Recurring themes and concepts provide a connective structure for scientific ideas across disciplines. The connection(s) below show some ways that teachers can help students understand how the content they are learning fits into the broader understanding of science. These connections do not represent all possible connections that might be made but highlight some that are appropriate for this grade level.
Patterns
Patterns are regular sequences that can be found throughout nature.
A consistent pattern is present when two objects collide. In any collision, the forces that result between the two objects are equal in magnitude and opposite in direction. For example, when a bat collides with a ball, the bat applies a force to the ball and the ball applies an equal amount of force to the bat.
Scale, proportion, and quantity in systems
It is important to consider how changes in scale, proportion, or quantity affect a system’s structure or performance. Scale refers to the size of an object in relation to another object or its environment. Proportion is the ratio of one quantity to another. Quantity is a count of a set of objects or a measurement of a substance.
The forces acting between two objects are equal in magnitude (quantity).
Cross-curricular Connections
The cross-curricular connections are designed to help educators make content connections between the science TEKS and math, English language arts and reading, social studies, and technology applications. The standards below illustrate alignment between grade level content areas which may help educators develop cross-curricular lessons. These connections do not represent all possible connections that might be made.
Expand All
Math
Math.6.1.A apply mathematics to problems arising in everyday life, society, and the workplace