Introduction

Introduction

A molecular model shows hundreds of atoms, represented by yellow, red, black, blue and white balls, connected together by rods to form a molecule. The molecule has a complex but very specific three-dimensional structure with rings and branches.
Figure 2.1 Atoms are the building blocks of molecules found in the universe—air, soil, water, rocks . . . and also the cells of all living organisms. In this model of an organic molecule, the atoms of carbon (black), hydrogen (white), nitrogen (blue), oxygen (red), and sulfur (yellow) are shown in proportional atomic size. The silver rods indicate chemical bonds. (credit: modification of work by Christian Guthier)

All matter, including living things, is made up of various combinations of elements. Some of the most abundant elements in living organisms include carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. These elements form the major biological molecules—nucleic acids, proteins, carbohydrates, and lipids—that are the fundamental components of living matter. Biologists study these important molecules to understand their unique structures which determine their specialized functions.

All biological processes follow the laws of physics and chemistry. Therefore, in order to understand how biological systems work, it is important to understand the underlying physics and chemistry. For example, the flow of blood within the circulatory system follows the laws of physics regulating the modes of fluid flow. Chemical laws dictate the breakdown of large, complex food molecules into smaller molecules as well as their conversion to energy stored in adenosine triphosphate (ATP). Polar molecules, the formation of hydrogen bonds, and the resulting properties of water are key to understanding living processes. Recognizing the properties of acids and bases is important to understand various biological processes such as digestion. Therefore, the fundamentals of physics and chemistry are the foundation for gaining insight into biological processes.

An example of how understanding of chemical processes can give insight to a biological process is recent research on seasonal affective disorder (SAD). This form of depression affects up to 10 percent of the population in the fall and winter. Symptoms include a tendency to overeat, oversleep, lack of energy, and difficulty concentrating on tasks. Now scientists have found out that not only may SAD be caused by a deficiency in vitamin D, but that it is more common in individuals with darker skin pigmentation. You can read more about it here.

Disclaimer

This section may include links to websites that contain links to articles on unrelated topics.  See the preface for more information.