Learning Objectives
Learning Objectives
By the end of this section, you will be able to do the following:
- Explain why a voltmeter must be connected in parallel with the circuit
- Draw a diagram showing an ammeter correctly connected in a circuit
- Describe how a galvanometer can be used as either a voltmeter or an ammeter
- Find the resistance that must be placed in series with a galvanometer to allow it to be used as a voltmeter with a given reading
- Explain why measuring the voltage or current in a circuit can never be exact
Voltmeters measure voltage, whereas ammeters measure current. Some of the meters in automobile dashboards, digital cameras, cell phones, and tuner-amplifiers are voltmeters or ammeters (see Figure 4.29). The internal construction of the simplest of these meters, and how they are connected to the system they monitor gives further insight into applications of series and parallel connections.
Voltmeters are connected in parallel with whatever device’s voltage is to be measured. A parallel connection is used because objects in parallel experience the same potential difference (see Figure 4.30, where the voltmeter is represented by the symbol V).
Ammeters are connected in series with whatever device’s current is to be measured. A series connection is used because objects in series have the same current passing through them (see Figure 4.31, where the ammeter is represented by the symbol A).
Analog Meters: Galvanometers
Analog Meters: Galvanometers
Analog meters have a needle that swivels to point at numbers on a scale, as opposed to digital meters, which have numerical readouts similar to a handheld calculator. The heart of most analog meters is a device called a galvanometer, denoted by G. Current flow through a galvanometer, produces a proportional needle deflection. This deflection is due to the force of a magnetic field on a current-carrying wire.
The two crucial characteristics of a given galvanometer are its resistance and current sensitivity. Current sensitivity is the current that gives a full-scale deflection of the galvanometer’s needle, the maximum current that the instrument can measure. For example, a galvanometer with a current sensitivity of has a maximum deflection of its needle when flows through it, reads half-scale when flows through it, and so on.
If such a galvanometer has a resistance, then a voltage of only produces a full-scale reading. By connecting resistors to this galvanometer in different ways, you can use it as either a voltmeter or an ammeter that can measure a broad range of voltages or currents.
Galvanometer as Voltmeter
Figure 4.32 shows how a galvanometer can be used as a voltmeter by connecting it in series with a large resistance, The value of the resistance is determined by the maximum voltage to be measured. Suppose you want 10 V to produce a full-scale deflection of a voltmeter containing a galvanometer with a sensitivity. Then 10 V applied to the meter must produce a current of The total resistance must be
is so large that the galvanometer resistance, is nearly negligible. Note that 5 V applied to this voltmeter produces a half-scale deflection by producing a current through the meter, so the voltmeter’s reading is proportional to voltage as desired.
This voltmeter would not be useful for voltages less than about half a volt because the meter deflection would be small and difficult to read accurately. For other voltage ranges, other resistances are placed in series with the galvanometer. Many meters have a choice of scales. That choice involves switching an appropriate resistance into series with the galvanometer.
Galvanometer as Ammeter
The same galvanometer can also be made into an ammeter by placing it in parallel with a small resistance often called the shunt resistance, as shown in Figure 4.33. Since the shunt resistance is small, most of the current passes through it, allowing an ammeter to measure currents much greater than those producing a full-scale deflection of the galvanometer.
Suppose, for example, that an ammeter is needed that gives a full-scale deflection for 1.0 A and contains the same galvanometer with its sensitivity. Since and are in parallel, the voltage across them is the same.
These drops are so that Solving for and noting that is and is 0.999950 A, we have
Taking Measurements Alters the Circuit
Taking Measurements Alters the Circuit
When you use a voltmeter or ammeter, you are connecting another resistor to an existing circuit and, thus, altering the circuit. Ideally, voltmeters and ammeters do not appreciably affect the circuit, but it is instructive to examine the circumstances under which they do or do not interfere.
First, consider the voltmeter, which is always placed in parallel with the device being measured. Very little current flows through the voltmeter if its resistance is a few orders of magnitude greater than the device, so the circuit is not appreciably affected (see Figure 4.34(a)). A large resistance in parallel with a small one has a combined resistance essentially equal to the small one. If, however, the voltmeter’s resistance is comparable to that of the device being measured, then the two in parallel have a smaller resistance, appreciably affecting the circuit (see Figure 4.34(b)). The voltage across the device is not the same as when the voltmeter is out of the circuit.
An ammeter is placed in series in the branch of the circuit being measured so that its resistance adds to that branch. Normally, the ammeter’s resistance is very small compared with the resistances of the devices in the circuit, so the extra resistance is negligible (see Figure 4.35(a)). However, if very small load resistances are involved or if the ammeter is not as low in resistance as it should be, then the total series resistance is significantly greater, and the current in the branch being measured is reduced (see Figure 4.35(b)).
A practical problem can occur if the ammeter is connected incorrectly. If it was put in parallel with the resistor to measure the current in it, you could possibly damage the meter; the low resistance of the ammeter would allow most of the current in the circuit to go through the galvanometer, and this current would be larger since the effective resistance is smaller.
One solution to the problem of voltmeters and ammeters interfering with the circuits being measured is to use galvanometers with greater sensitivity. This allows construction of voltmeters with greater resistance and ammeters with smaller resistance than when less sensitive galvanometers are used.
There are practical limits to galvanometer sensitivity, but it is possible to get analog meters that make measurements accurate to a few percent. Note that the inaccuracy comes from altering the circuit, not from a fault in the meter.
Connections: Limits to Knowledge
Making a measurement alters the system being measured in a manner that produces uncertainty in the measurement. For macroscopic systems, such as the circuits discussed in this module, the alteration can usually be made negligibly small, but it cannot be eliminated entirely. For submicroscopic systems, such as atoms, nuclei, and smaller particles, measurement alters the system in a manner that cannot be made arbitrarily small. This actually limits knowledge of the system—even limiting what nature can know about itself. We shall see profound implications of this when the Heisenberg uncertainty principle is discussed in the modules on quantum mechanics.
There is another measurement technique based on drawing no current at all and, hence, not altering the circuit at all. These are called null measurements and are the topic of Null Measurements. Digital meters that employ solid-state electronics and null measurements can attain accuracies of one part in
Check Your Understanding
Digital meters are able to detect smaller currents than analog meters employing galvanometers. How does this explain their ability to measure voltage and current more accurately than analog meters?
Solution
Since digital meters require less current than analog meters, they alter the circuit less than analog meters. Their resistance as a voltmeter can be far greater than an analog meter, and their resistance as an ammeter can be far less than an analog meter. Consult Figure 4.30 and Figure 4.31 and their discussion in the text.
PhET Explorations: Circuit Construction Kit (DC Only), Virtual Lab
Build circuits with resistors, lightbulbs, batteries, and switches and take measurements with laboratory equipment like the realistic ammeter and voltmeter.