Published on
Texas Gateway
(
https://teksguide.org
)
Print Resource
Key Equations
impulse
F
net
Δ
t
F
net
Δ
t
impulse–momentum theorem
Δ
p
=
F
net
Δ
t
Δ
p
=
F
net
Δ
t
linear momentum
p
=
m
v
p
=
m
v
Newton’s second law in terms of momentum
F
net
=
Δ
p
Δ
t
F
net
=
Δ
p
Δ
t
law of conservation of momentum
p
tot
= constant, or
p
tot
=
p
′
tot
conservation of momentum for two objects
p
1
+
p
2
= constant, or
p
1
+
p
2
=
p
′
1
+
p
′
2
angular momentum
L
=
I
ω
ω
conservation of momentum in an elastic collision
m
1
v
1
+
m
2
v
2
=
m
1
v
′
1
+
m
2
v
′
2
,
m
1
v
1
+
m
2
v
2
=
m
1
v
′
1
+
m
2
v
′
2
,
conservation of momentum in an inelastic collision
m
1
v
1
+
m
2
v
2
=
(
m
1
+
m
2
)
v
′
m
1
v
1
+
m
2
v
2
=
(
m
1
+
m
2
)
v
′
conservation of momentum along
x
-axis for 2D collisions
m
1
v
1
=
m
1
v
′
1
cos
θ
1
+
m
2
v
′
2
cos
θ
2
m
1
v
1
=
m
1
v
′
1
cos
θ
1
+
m
2
v
′
2
cos
θ
2
conservation of momentum along
y
-axis for 2D collisions
0
=
m
1
v
′
1
sin
θ
1
+
m
2
v
′
2
sin
θ
2
0
=
m
1
v
′
1
sin
θ
1
+
m
2
v
′
2
sin
θ
2