What It Means to Do Work
The scientific definition of work differs in some ways from its everyday meaning. Certain things we think of as hard work, such as writing an exam or carrying a heavy load on level ground, are not work as defined by a scientist. The scientific definition of work reveals its relationship to energy—whenever work is done, energy is transferred.
For work, in the scientific sense, to be done on an object, a force must be exerted on that object and there must be displacement of that object in the direction of the force.
Formally, the work done on a system by a constant force is defined to be the product of the component of the force in the direction of motion and the distance through which the force acts. For a constant force, this is expressed in equation form as
7.1 W=∣F∣(cosθ)∣d∣,
where W is work, d is the displacement of the system, and θ is the angle between the force vector F and the displacement vector d, as in Figure 7.2. We can also write this as
7.2 W=Fdcosθ.
To find the work done on a system that undergoes motion that is not one-way or that is in two or three dimensions, we divide the motion into one-way one-dimensional segments and add up the work done over each segment.
What Is Work?
The work done on a system by a constant force is the product of the component of the force in the direction of motion times the distance through which the force acts. For one-way motion in one dimension, this is expressed in equation form as
7.3 W=Fdcosθ,
where W is work, F is the magnitude of the force on the system, d is the magnitude of the displacement of the system, and θ is the angle between the force vector F and the displacement vector d.
To examine what the definition of work means, let us consider the other situations shown in Figure 7.2. The person holding the briefcase in Figure 7.2(b) does no work, for example. Here d=0, so W=0. Why is it you get tired just holding a load? The answer is that your muscles are doing work against one another, but they are doing no work on the system of interest (the briefcase-Earth system—see Gravitational Potential Energy for more details). There must be displacement for work to be done, and there must be a component of the force in the direction of the motion. For example, the person carrying the briefcase on level ground in Figure 7.2(c) does no work on it, because the force is perpendicular to the motion. That is, cos90º =0, and so W=0.
In contrast, when a force exerted on the system has a component in the direction of motion, such as in Figure 7.2(d), work is done—energy is transferred to the briefcase. Finally, in Figure 7.2(e), energy is transferred from the briefcase to a generator. There are two good ways to interpret this energy transfer. One interpretation is that the briefcase’s weight does work on the generator, giving it energy. The other interpretation is that the generator does negative work on the briefcase, thus removing energy from it. The drawing shows the latter, with the force from the generator upward on the briefcase, and the displacement downward. This makes θ=180º, and cos 180º=–1; therefore, W is negative.
Real-World Connections: When Work Happens
Note that work as we define it is not the same as effort. You can push against a concrete wall all you want, but you won’t move it. While the pushing represents effort on your part, the fact that you have not changed the wall’s state in any way indicates that you haven’t done work. If you did somehow push the wall over, this would indicate a change in the wall’s state, and therefore you would have done work.
This principle can also be shown with Figure 7.2(a): As you push a lawnmower against friction, both you and friction are changing the lawnmower’s state. However, only the component of the force parallel to the movement is changing the lawnmower’s state. The component perpendicular to the motion is trying to push the lawnmower straight into Earth; the lawnmower does not move into Earth, and therefore the lawnmower’s state is not changing in the direction of Earth.
Similarly, in Figure 7.2(c), both your hand and gravity are exerting force on the briefcase. However, they are both acting perpendicular to the direction of motion, hence they are not changing the condition of the briefcase and do no work. However, if the briefcase were dropped, then its displacement would be parallel to the force of gravity, which would do work on it, changing its state—it would fall to the ground.