Relative Velocity
If a person rows a boat across a rapidly flowing river and tries to head directly for the other shore, the boat instead moves diagonally relative to the shore, as in Figure 3.44. The boat does not move in the direction in which it is pointed. The reason, of course, is that the river carries the boat downstream. Similarly, if a small airplane flies overhead in a strong crosswind, you can sometimes see that the plane is not moving in the direction in which it is pointed, as illustrated in Figure 3.45. The plane is moving straight ahead relative to the air, but the movement of the air mass relative to the ground carries it sideways.
In each of these situations, an object has a velocity relative to a medium (such as a river) and that medium has a velocity relative to an observer on solid ground. The velocity of the object relative to the observer is the sum of these velocity vectors, as indicated in Figure 3.44 and Figure 3.45. These situations are only two of many in which it is useful to add velocities. In this module, we first re-examine how to add velocities and then consider certain aspects of what relative velocity means.
How do we add velocities? Velocity is a vector—it has both magnitude and direction—the rules of vector addition discussed in Vector Addition and Subtraction: Graphical Methods and Vector Addition and Subtraction: Analytical Methods apply to the addition of velocities, just as they do for any other vectors. In one-dimensional motion, the addition of velocities is simple—they add like ordinary numbers. For example, if a field hockey player is moving at straight toward the goal and drives the ball in the same direction with a velocity of relative to her body, then the velocity of the ball is relative to the stationary, profusely sweating goalkeeper standing in front of the goal.
In two-dimensional motion, either graphical or analytical techniques can be used to add velocities. We will concentrate on analytical techniques. The following equations give the relationships between the magnitude and direction of velocity ( and ) and its components ( and ) along the x- and y-axes of an appropriately chosen coordinate system
3.72
3.73
3.74
3.75
These equations are valid for any vectors and are adapted specifically for velocity. The first two equations are used to find the components of a velocity when its magnitude and direction are known. The last two are used to find the magnitude and direction of velocity when its components are known.
Take-Home Experiment: Relative Velocity of a Boat
Fill a bathtub half-full of water. Take a toy boat or some other object that floats in water. Unplug the drain so water starts to drain. Try pushing the boat from one side of the tub to the other and perpendicular to the flow of water. Which way do you need to push the boat so that it ends up immediately opposite? Compare the directions of the flow of water, heading of the boat, and actual velocity of the boat.
Example 3.6 Adding Velocities: A Boat on a River
Refer to Figure 3.47, which shows a boat trying to go straight across the river. Let us calculate the magnitude and direction of the boat's velocity relative to an observer on the shore, . The velocity of the boat, , is 0.75 m/s in the -direction relative to the river and the velocity of the river, , is 1.20 m/s to the right.
Strategy
We start by choosing a coordinate system with its -axis parallel to the velocity of the river, as shown in Figure 3.47. Because the boat is directed straight toward the other shore, its velocity relative to the water is parallel to the -axis and perpendicular to the velocity of the river. Thus, we can add the two velocities by using the equations and directly.
Solution
The magnitude of the total velocity is
3.76 where
3.77
and
3.78 Thus,
3.79
yielding
3.80 The direction of the total velocity is given by
3.81 This equation gives
3.82 Discussion
Both the magnitude and the direction of the total velocity are consistent with Figure 3.47. Note that because the velocity of the river is large compared with the velocity of the boat, it is swept rapidly downstream. This result is evidenced by the small angle (only ) the total velocity has relative to the riverbank.
Example 3.7 Calculating Velocity: Wind Velocity Causes an Airplane to Drift
Calculate the wind velocity for the situation shown in Figure 3.48. The plane is known to be moving at 45.0 m/s due north relative to the air mass, while its velocity relative to the ground (its total velocity) is 38.0 m/s in a direction west of north.
Strategy
In this problem, somewhat different from the previous example, we know the total velocity
and that it is the sum of two other velocities,
(the wind) and
(the plane relative to the air mass). The quantity
is known, and we are asked to find
. None of the velocities are perpendicular, but it is possible to find their components along a common set of perpendicular axes. If we can find the components of
, then we can combine them to solve for its magnitude and direction. As shown in Figure 3.48, we choose a coordinate system with its x-axis due east and its y-axis due north (parallel to
). You may wish to look back at the discussion of the addition of vectors using perpendicular components in Vector Addition and Subtraction: Analytical Methods.
Solution
Because
is the vector sum of the
and
, its x- and y-components are the sums of the x- and y-components of the wind and plane velocities. Note that the plane only has vertical component of velocity so
and
. That is,
3.83
and
3.84 We can use the first of these two equations to find
3.85 Because
and
we have
3.86 The minus sign indicates motion west which is consistent with the diagram.
Now, to find
we note that
3.87
Here ; thus,
3.88 This minus sign indicates motion south which is consistent with the diagram.
Now that the perpendicular components of the wind velocity and are known, we can find the magnitude and direction of . First, the magnitude is
3.89
so that
3.90 The direction is
3.91
giving
3.92 Discussion
The wind's speed and direction are consistent with the significant effect the wind has on the total velocity of the plane, as seen in Figure 3.48. Because the plane is fighting a strong combination of crosswind and head-wind, it ends up with a total velocity significantly less than its velocity relative to the air mass as well as heading in a different direction.
Note that in both of the last two examples, we were able to make the mathematics easier by choosing a coordinate system with one axis parallel to one of the velocities. We will repeatedly find that choosing an appropriate coordinate system makes problem solving easier. For example, in projectile motion we always use a coordinate system with one axis parallel to gravity.