Introduction
Data may come from a population or from a sample. Lowercase letters like or generally are used to represent data values. Most data can be put into the following categories:
- Qualitative
- Quantitative
Qualitative data are the result of categorizing or describing attributes of a population. Qualitative data are also often called categorical data. Hair color, blood type, ethnic group, the car a person drives, and the street a person lives on are examples of qualitative data. Qualitative data are generally described by words or letters. For instance, hair color might be black, dark brown, light brown, blonde, gray, or red. Blood type might be AB+, O–, or B+. Researchers often prefer to use quantitative data over qualitative data because it lends itself more easily to mathematical analysis. For example, it does not make sense to find an average hair color or blood type.
Quantitative data are always numbers. Quantitative data are the result of counting or measuring attributes of a population. Amount of money, pulse rate, weight, number of people living in your town, and number of students who take statistics are examples of quantitative data. Quantitative data may be either discrete or continuous.
All data that are the result of counting are called quantitative discrete data. These data take on only certain numerical values. If you count the number of phone calls you receive for each day of the week, you might get values such as zero, one, two, or three.
Data that are not only made up of counting numbers, but that may include fractions, decimals, or irrational numbers, are called quantitative continuous data. Continuous data are often the results of measurements like lengths, weights, or times. A list of the lengths in minutes for all the phone calls that you make in a week, with numbers like 2.4, 7.5, or 11.0, would be quantitative continuous data.
Example 1.5 Data Sample of Quantitative Discrete Data
The data are the number of books students carry in their backpacks. You sample five students. Two students carry three books, one student carries four books, one student carries two books, and one student carries one book. The numbers of books—3, 4, 2, and 1—are the quantitative discrete data.
The data are the number of machines in a gym. You sample five gyms. One gym has 12 machines, one gym has 15 machines, one gym has 10 machines, one gym has 22 machines, and the other gym has 20 machines. What type of data is this?
Example 1.6 Data Sample of Quantitative Continuous Data
The data are the weights of backpacks with books in them. You sample the same five students. The weights—in pounds—of their backpacks are 6.2, 7, 6.8, 9.1, 4.3. Notice that backpacks carrying three books can have different weights. Weights are quantitative continuous data.
The data are the areas of lawns in square feet. You sample five houses. The areas of the lawns are 144 sq. ft., 160 sq. ft., 190 sq. ft., 180 sq. ft., and 210 sq. ft. What type of data is this?
Example 1.7
You go to the supermarket and purchase three cans of soup (19 ounces tomato bisque, 14.1 ounces lentil, and 19 ounces Italian wedding), two packages of nuts (walnuts and peanuts), four different kinds of vegetable (broccoli, cauliflower, spinach, and carrots), and two desserts (16 ounces pistachio ice cream and 32 ounces chocolate chip cookies).
Name data sets that are quantitative discrete, quantitative continuous, and qualitative.
A possible solution:
- One example of a quantitative discrete data set would be three cans of soup, two packages of nuts, four kinds of vegetables, and two desserts, because you count them.
- The weights of the soups (19 ounces, 14.1 ounces, 19 ounces) are quantitative continuous data because you measure weights as precisely as possible.
- Types of soups, nuts, vegetables, and desserts are qualitative data because they are categorical.
Try to identify additional data sets in this example.
Example 1.8
The data are the colors of backpacks. Again, you sample the same five students. One student has a red backpack, two students have black backpacks, one student has a green backpack, and one student has a gray backpack. The colors red, black, black, green, and gray are qualitative data.
The data are the colors of houses. You sample five houses. The colors of the houses are white, yellow, white, red, and white. What type of data is this?
Note
You may collect data as numbers and report it categorically. For example, the quiz scores for each student are recorded throughout the term. At the end of the term, the quiz scores are reported as A, B, C, D, or F.
Example 1.9
- Work collaboratively to determine the correct data type—quantitative or qualitative. Indicate whether quantitative data are continuous or discrete. Hint: Data that are discrete often start with the words the number of.
- The number of pairs of shoes you own
- The type of car you drive
- The distance from your home to the nearest grocery store
- The number of classes you take per school year
- The type of calculator you use
- Weights of sumo wrestlers
- Number of correct answers on a quiz
- IQ scores (this may cause some discussion)
Items a, d, and g are quantitative discrete; items c, f, and h are quantitative continuous; items b and e are qualitative or categorical.
Determine the correct data type—quantitative or qualitative—for the number of cars in a parking lot. Indicate whether quantitative data are continuous or discrete.
Example 1.10
A statistics professor collects information about the classification of her students as freshmen, sophomores, juniors, or seniors. The data she collects are summarized in the pie chart Figure 1.3. What type of data does this graph show?
This pie chart shows the students in each year, which is qualitative or categorical data.
A large school district keeps data of the number of students who receive test scores on an end of the year standardized exam. The data he collects are summarized in the histogram. The class boundaries are 50 to less than 60, 60 to less than 70, 70 to less than 80, 80 to less than 90, and 90 to less than 100.