The precise timing and formation of the mitotic spindle is critical to the success of eukaryotic cell division. Prokaryotic cells, on the other hand, do not undergo karyokinesis and therefore have no need for a mitotic spindle. However, the FtsZ protein that plays such a vital role in prokaryotic cytokinesis is structurally and functionally very similar to tubulin, the building block of the microtubules that make up the mitotic spindle fibers that are necessary for eukaryotes. FtsZ proteins can form filaments, rings, and other three-dimensional structures that resemble the way tubulin forms microtubules, centrioles, and various cytoskeletal components. In addition, both FtsZ and tubulin employ the same energy source, GTP (guanosine triphosphate), to rapidly assemble and disassemble complex structures.
FtsZ and tubulin are homologous structures derived from common evolutionary origins. In this example, FtsZ is the ancestor protein to tubulin (a modern protein). While both proteins are found in extant organisms, tubulin function has evolved and diversified tremendously since evolving from its FtsZ prokaryotic origin. A survey of mitotic assembly components found in present-day unicellular eukaryotes reveals crucial intermediary steps to the complex membrane-enclosed genomes of multicellular eukaryotes (Table 10.4).
Cell Division Apparatus among Various Organisms |
| Structure of Genetic Material | Division of Nuclear Material | Separation of Daughter Cells |
Prokaryotes | There is no nucleus. The single, circular chromosome exists in a region of cytoplasm called the nucleoid. | Occurs through binary fission. As the chromosome is replicated, the two copies move to opposite ends of the cell by an unknown mechanism. | FtsZ proteins assemble into a ring that pinches the cell in two. |
Some Protists | Linear chromosomes exist in the nucleus. | Chromosomes attach to the nuclear envelope, which remains intact. The mitotic spindle passes through the envelope and elongates the cell. No centrioles exist. | Microfilaments form a cleavage furrow that pinches the cell in two. |
Other Protists | Linear chromosomes exist in the nucleus. | A mitotic spindle forms from the centrioles and passes through the nuclear membrane, which remains intact. Chromosomes attach to the mitotic spindle, which separates the chromosomes and elongates the cell. | Microfilaments form a cleavage furrow that pinches the cell in two. |
Animal Cells | Linear chromosomes exist in the nucleus. | A mitotic spindle forms from the centrosomes. The nuclear envelope dissolves. Chromosomes attach to the mitotic spindle, which separates the chromosomes and elongates the cell. | Microfilaments form a cleavage furrow that pinches the cell in two. |
Table 10.4
FtsZ is a prokaryotic protein and tubulin is a eukaryotic protein. These two proteins share many structural and functional similarities and are believed to have evolved from the same ancestral protein. However, there are also some important differences between these proteins. In what way are these proteins different?
- Tubulin proteins can rapidly disassemble, but FtsZ proteins cannot.
- Tubulin proteins can form long filaments, but FtsZ proteins cannot.
- Tubulin uses GTP as an energy source, but FtsZ does not.
- Tubulin pulls chromosomes apart, but FtsZ does not.