Digestion and Absorption
Digestion is the mechanical and chemical break down of food into small organic fragments. It is important to break down macromolecules into smaller fragments that are of suitable size for absorption across the digestive epithelium. Large, complex molecules of proteins, polysaccharides, and lipids must be reduced to simpler particles such as simple sugar before they can be absorbed by the digestive epithelial cells. Different organs play specific roles in the digestive process. The animal diet needs carbohydrates, protein, and fat, as well as vitamins and inorganic components for nutritional balance. How each of these components is digested is discussed in the following sections.
Carbohydrates
The digestion of carbohydrates begins in the mouth. The salivary enzyme, amylase, begins the breakdown of food starches into maltose, a disaccharide. As the bolus of food travels through the esophagus to the stomach, no significant digestion of carbohydrates takes place. The esophagus produces no digestive enzymes but does produce mucous for lubrication. The acidic environment in the stomach stops the action of the amylase enzyme.
The next step of carbohydrate digestion takes place in the duodenum. Recall that the chyme from the stomach enters the duodenum and mixes with the digestive secretion from the pancreas, liver, and gallbladder. Pancreatic juices also contain amylase, which continues the breakdown of starch and glycogen into maltose, a disaccharide. The disaccharides are broken down into monosaccharides by enzymes called maltases, sucrases, and lactases, which are also present in the brush border of the small intestinal wall. Maltase breaks down maltose into glucose. Other disaccharides, such as sucrose and lactose are broken down by sucrase and lactase, respectively. Sucrase breaks down sucrose or table sugar into glucose and fructose, and lactase breaks down lactose or milk sugar into glucose and galactose. The monosaccharides called glucose thus produced are absorbed and then can be used in metabolic pathways to harness energy. The monosaccharides are transported across the intestinal epithelium into the bloodstream to be transported to the different cells in the body. The steps in carbohydrate digestion are summarized in Figure 25.17 and Table 25.5.
Digestion of Carbohydrates |
Enzyme |
Produced By |
Site of Action |
Substrate Acting On |
End Products |
Salivary amylase |
Salivary glands |
Mouth |
Polysaccharides (starch) |
Disaccharides (maltose), oligosaccharides |
Pancreatic amylase |
Pancreas |
Small intestine |
Polysaccharides (starch) |
Disaccharides (maltose), monosaccharides |
Oligosaccharidases |
Lining of the intestine; brush border membrane |
Small intestine |
Disaccharides |
Monosaccharides (e.g., glucose, fructose, galactose, etc.) |
Table 25.5
Protein
A large part of protein digestion takes place in the stomach. The enzyme pepsin plays an important role in the digestion of proteins by breaking down the intact protein to peptides, which are short chains of four to nine amino acids. In the duodenum, other enzymes—trypsin, elastase, and chymotrypsin act on the peptides reducing them to smaller peptides. Trypsin elastase, carboxypeptidase, and chymotrypsin are produced by the pancreas and released into the duodenum where they act on the chyme. Further breakdown of peptides to single amino acids is aided by enzymes called peptidases (those that break down peptides). Specifically, carboxypeptidase, dipeptidase, and aminopeptidase play important roles in reducing the peptides to free amino acids. The amino acids are absorbed into the bloodstream through the small intestines. The steps in protein digestion are summarized in Figure 25.18 and Table 25.6.
Digestion of Protein |
Enzyme |
Produced By |
Site of Action |
Substrate Acting On |
End Products |
Pepsin |
Stomach chief cells |
Stomach |
Proteins |
Peptides |
- Trypsin
- Elastase Chymotrypsin
|
Pancreas |
Small intestine |
Proteins |
Peptides |
Carboxypeptidase |
Pancreas |
Small intestine |
Peptides |
Amino acids and peptides |
- Aminopeptidase
- Dipeptidase
|
Lining of intestine |
Small intestine |
Peptides |
Amino acids |
Table 25.6
Lipids
Lipid digestion begins in the stomach with the aid of lingual lipase and gastric lipase. However, the bulk of lipid digestion occurs in the small intestine due to pancreatic lipase. When chyme enters the duodenum, the hormonal responses trigger the release of bile, which is produced in the liver and stored in the gallbladder. Bile aids in the digestion of lipids, primarily triglycerides by emulsification. Emulsification is a process in which large lipid globules are broken down into several small lipid globules. These small globules are more widely distributed in the chyme rather than forming large aggregates. Lipids are hydrophobic substances: in the presence of water, they will aggregate to form globules to minimize exposure to water. Bile contains bile salts, which are amphipathic, meaning they contain hydrophobic and hydrophilic parts. Thus, the bile salts hydrophilic side can interface with water on one side and the hydrophobic side interfaces with lipids on the other. By doing so, bile salts emulsify large lipid globules into small lipid globules.
Why is emulsification important for digestion of lipids? Pancreatic juices contain enzymes called lipases, which are enzymes that break down lipids. If the lipid in the chyme aggregates into large globules, very little surface area of the lipids is available for the lipases to act on, leaving lipid digestion incomplete. By forming an emulsion, bile salts increase the available surface area of the lipids many fold. The pancreatic lipases can then act on the lipids more efficiently and digest them, as detailed in Figure 25.19. Lipases break down the lipids into fatty acids and glycerides. These molecules can pass through the plasma membrane of the cell and enter the epithelial cells of the intestinal lining. The bile salts surround long-chain fatty acids and monoglycerides forming tiny spheres called micelles. The micelles move into the brush border of the small intestine absorptive cells where the long-chain fatty acids and monoglycerides diffuse out of the micelles into the absorptive cells leaving the micelles behind in the chyme. The long-chain fatty acids and monoglycerides recombine in the absorptive cells to form triglycerides, which aggregate into globules and become coated with proteins. These large spheres are called chylomicrons. Chylomicrons contain triglycerides, cholesterol, and other lipids and have proteins on their surface. The surface is also composed of the hydrophilic phosphate heads of phospholipids. Together, they enable the chylomicron to move in an aqueous environment without exposing the lipids to water. Chylomicrons leave the absorptive cells via exocytosis. Chylomicrons enter the lymphatic vessels, and then enter the blood in the subclavian vein.
Vitamins
Vitamins can be either water-soluble or lipid-soluble. Fat soluble vitamins are absorbed in the same manner as lipids. It is important to consume some amount of dietary lipid to aid the absorption of lipid-soluble vitamins. Water-soluble vitamins can be directly absorbed into the bloodstream from the intestine.
Link to Learning
This website has an overview of the digestion of protein, fat, and carbohydrates.
Which of the following events in digestion and absorption is incorrect?
- Carbohydrate digestion begins in the mouth.
- Protein is primarily digested in the stomach.
- Fats are primarily digested in the large intestine.
- Digested carbohydrate, fat, and protein molecules are absorbed by villi in the small intestine.
Visual Connection
Which of the following statements about digestive processes is true?
- Bile emulsifies lipids in the small intestine.
- Trypsin and lipase in the stomach digest protein.
- Amylase, maltase, and lactase in the mouth digest carbohydrates.
- Peptides are primarily absorbed in the large intestines.