Momentum and Newton’s Second Law
The importance of momentum, unlike the importance of energy, was recognized early in the development of classical physics. Momentum was deemed so important that it was called the quantity of motion. Newton actually stated his second law of motion in terms of momentum: The net external force equals the change in momentum of a system divided by the time over which it changes. Using symbols, this law is
8.7
where is the net external force, is the change in momentum, and is the change in time.
Newton’s Second Law of Motion in Terms of Momentum
The net external force equals the change in momentum of a system divided by the time over which it changes.
8.8
Making Connections: Force and Momentum
Force and momentum are intimately related. Force acting over time can change momentum, and Newton’s second law of motion, can be stated in its most broadly applicable form in terms of momentum. Momentum continues to be a key concept in the study of atomic and subatomic particles in quantum mechanics.
This statement of Newton’s second law of motion includes the more familiar as a special case. We can derive this form as follows. First, note that the change in momentum, , is given by
8.9 If the mass of the system is constant, then
8.10 So, for constant mass, Newton’s second law of motion becomes
8.11
Because we get the familiar equation
when the mass of the system is constant.
Newton’s second law of motion stated in terms of momentum is more generally applicable because it can be applied to systems where the mass is changing, such as rockets, as well as to systems of constant mass. We will consider systems with varying mass in some detail; however, the relationship between momentum and force remains useful when mass is constant, such as in the following example.
Example 8.2 Calculating Force: Venus Williams’s Racquet
During the 2007 French Open, Venus Williams hit the fastest recorded serve in a premier women’s match, reaching a speed of 58 m/s (209 km/h). What is the average force exerted on the 0.057-kg tennis ball by Venus Williams’s racquet, assuming that the ball’s speed just after impact is 58 m/s, that the initial horizontal component of the velocity before impact is negligible, and that the ball remained in contact with the racquet for 5.0 ms?
Strategy
This problem involves only one dimension because the ball starts from having no horizontal velocity component before impact. Newton’s second law stated in terms of momentum is then written as
8.13
As noted above, when mass is constant, the change in momentum is given by
8.14 In this example, the velocity just after impact and the change in time are given; thus, once is calculated, can be used to find the force.
Solution
To determine the change in momentum, substitute the values for the initial and final velocities into the equation above.
8.15
Now the magnitude of the net external force can determined by using :
8.16
where we have retained only two significant figures in the final step.
Discussion
This quantity was the average force exerted by Venus Williams’s racquet on the tennis ball during its brief impact—note that the ball also experienced the 0.56-N force of gravity, but that force was not due to the racquet. This problem could also be solved by first finding the acceleration and then using but one additional step would be required compared with the strategy used in this example.
Making Connections: Illustrative Example
In Figure 8.2, a puck is shown colliding with the edge of an air hockey table at a glancing angle. During the collision, the edge of the table exerts a force F on the puck, and the velocity of the puck changes as a result of the collision. The change in momentum is found by the equation
8.17
As shown, the direction of the change in velocity is the same as the direction of the change in momentum, which, in turn, is in the same direction as the force exerted by the edge of the table.
Note that there is only a horizontal change in velocity. There is no difference in the vertical components of the initial and final velocity vectors; therefore, there is no vertical component to the change in velocity vector or the change in momentum vector. This is consistent with the fact that the force exerted by the edge of the table is purely in the horizontal direction.